Basic explanation

For a given array A, Kadane's algorithm can be used to find the maximum sum of the subarrays of A. Here, we only consider non-empty subarrays.

Kadane's algorithm is based on dynamic programming. Let dp[j] be the maximum sum of a subarray that ends in A[j]. That is,

dp[j] = max⁡i(A[i] + A[i + 1] + ⋯ + A[j])

Then, a subarray ending in j+1 (such as A[i], A[i+1] + ... + A[j+1]) maximizes the A[i] + ... + A[j] part of the sum by being equal to dp[j] if it is non-empty, and 0 if it is. Thus, we have the recurrence:

dp[j + 1] = A[j + 1] + max⁡(dp[j], 0)

Since a subarray must end somewhere, max of j dp[j] must be the desired answer.

To compute dp efficiently, Kadane's algorithm is usually written in the form that reduces space complexity. We maintain two variables: ans as max of ⁡j dp[j], and cur as dp[j]; and update them as j iterates from 0 to A.length−1

Then, Kadane's algorithm is given by the following psuedocode:

#Kadane's algorithm
ans = cur = None
for x in A:
    cur = x + max(cur, 0)
    ans = max(ans, cur)
return ans

Evolving from two pointers to Kadane's algorithm Max subarray sum two pointers:


Max subarray sum dp:


Max subarray sum dp optimized → Kadane's:


Untitled

https://www.youtube.com/watch?v=jnoVtCKECmQ